OmROn

PCB Relay

Ultracompact, Ultrasensitive DPDT

Relay

■ Compact size and low 5-mm profile.
■ Low power consumption (140 mW for single-side stable, 100 to 300 mW for latching type) and high sensitivity.

- Low thermoelectromotive force.
- Low magnetic interference enables high-density mounting.
■ Single- and double-winding latching types also
 available.

Ordering Information

| Classification | | | Single-side stable | Single-winding latching |
| :--- | :--- | :--- | :--- | :--- | Double-winding latching (

Note: When ordering, add the rated coil voltage to the model number. Example: G6HK-2 12 VDC

Rated coil voltage

Model Number Legend

1. Relay Function
None: Single-side stable
U: Single-winding latching
K : Double-winding latching
2. Contact Form

2: DPDT
3. Terminal Shape

None: PCB terminal
F: Surface mount terminal
4. Classification

U: Ultrasonically cleanable
5. Rated Coil Voltage

3, 5, 6, 9, 12, 24 VDC

Specifications

- Coil Ratings

Single-side Stable Type (G6H-2, G6H-2F)

Rated voltage		3 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC
Rated current		46.7 mA	28.1 mA	23.3 mA	15.5 mA	11.7 mA	8.3 mA
Coil resistance		64.3Ω	178Ω	257Ω	579 ת	1,028 Ω	2,880 Ω
Coil inductance (H) (ref. value)	Armature OFF	0.025	0.065	0.11	0.24	0.43	1.2
	Armature ON	0.022	0.058	0.09	0.20	0.37	1.0
Must operate voltage		75\% max. of rated voltage					
Must release voltage		10\% min. of rated voltage					
Max. voltage		200% of rated voltage at $23^{\circ} \mathrm{C}$					170% of rated voltage at $23^{\circ} \mathrm{C}$
Power consumption		Approx. 140 mW					Approx. 200 mW

Note 48 VDC (single-side stable) model is also available. Consult OMRON for details.

Single-winding Latching Type (G6HU-2)

Rated voltage		3 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC
Rated current		33.3 mA	20 mA	16.7 mA	11.1 mA	8.3 mA	6.25 mA
Coil resistance		90Ω	250Ω	360Ω	810Ω	1,440 Ω	3,840 Ω
Coil inductance (H) (ref. value)	Armature OFF	0.034	0.11	0.14	0.33	0.60	1.6
	Armature ON	0.029	0.09	0.12	0.28	0.50	1.3
Must operate voltage		75\% max. of rated voltage					
Must release voltage		75% min. of rated voltage					
Max. voltage		180% of rated voltage at $23^{\circ} \mathrm{C}$					
Power consumption		Approx. 100 mW					Approx. 150 mW

Double-winding Latching Type (G6HK-2)

Rated voltage	3 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC
Rated current	66.7 mA	40 mA	33.3 mA	22.2 mA	16.7 mA	12.5 mA
Coil resistance	45Ω	125Ω	180Ω	405Ω	720Ω	$1,920 \Omega$
Coil inductance (H) (ref. value)	Armature OFF	0.014	0.042	0.065	0.16	0.3
Musmature ON	0.0075	0.023	0.035	0.086	0.16	0.33
Must operate voltage	75% max. of rated voltage					
Must release voltage	75% min. of rated voltage		130% of rated voltage at $23^{\circ} \mathrm{C}$			
Max. voltage	160% of rated voltage at $23^{\circ} \mathrm{C}$		Approx. 300 mW			
Power consumption						

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.

Contact Ratings

Load	Resistive load $(\cos \phi=1)$
Rated load	0.5 A at $125 \mathrm{VAC} ; 1 \mathrm{~A}$ at 30 VDC
Contact material	$\mathrm{Ag}($ Au-clad $)$
Rated carry current	1 A
Max. switching voltage	$125 \mathrm{VAC}, 110 \mathrm{VDC}$
Max. switching current	1 A
Max. switching power	$62.5 \mathrm{VA}, 33 \mathrm{~W}$
Failure rate (reference value)	$10 \mu \mathrm{~A}$ at 10 mVDC

Note P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation

- Characteristics

Contact resistance	$50 \mathrm{~m} \Omega$ max. (G6H-2-U: $100 \mathrm{~m} \Omega$ max.; G6H-2F: $60 \mathrm{~m} \Omega$ max.)
Operate (set) time	Single-side stable types: 3 ms max. (mean value: approx. 2 ms) Latching types: 3 ms max. (mean value: approx. 1.5 ms)
Release (reset) time	Single-side stable types: 2 ms max. (mean value: approx. 1 ms) Latching types: 3 ms max. (mean value: approx. 1.5 ms)
Bounce time	Operate: Approx. 0.5 ms Release: Approx. 0.5 ms Set/reset: Approx. 0.5 ms
Min. set/reset signal width	Latching type: 5 ms min . (at $23^{\circ} \mathrm{C}$)
Max. operating frequency	Mechanical: 36,000 operations/hr Electrical: 1,800 operations/hr (under rated load)
Insulation resistance	1,000 M 2 min. (at 500 VDC)
Dielectric withstand voltage	1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts 1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between contacts of different polarity $750 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity
Impulse withstand voltage	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ between contacts of same polarity (conforms to FCC Part 68)
Vibration resistance	Destruction: 10 to 55 to $10 \mathrm{~Hz}, 2.5-\mathrm{mm}$ single amplitude (5-mm double amplitude) Malfunction: 10 to 55 to $10 \mathrm{~Hz}, 1.65-\mathrm{mm}$ single amplitude ($3-\mathrm{mm}$ double amplitude)
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ Malfunction: $500 \mathrm{~m} / \mathrm{s}^{2}$
Endurance	Mechanical: 100,000,000 operations min. (at 36,000 operations/hr) Electrical: 200,000 operations min. (at 1,800 operations/hr)
Ambient temperature	Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 5\% to 85\%
Weight	Approx. 1.5 g

Approved Standards

UL114, UL478 (File No. E41515)/CSA C22.2 No.0, No. 14 (File No. LR31928)

Model	Contact form	Coil ratings	Contact ratings
G6H-2	DPDT	1.5 to 48 VDC	2 A, 30 VDC
G6HU-2			$0.3 \mathrm{~A}, 110$ VDC
G6HK-2		$0.5 \mathrm{~A}, 125$ VAC	
G6H(U/K)-2-U			
G6H(U/K)-2-100			

Engineering Data

Ambient Temperature vs. Maximum Coil Voltage

Single-side Stable (G6H-2)

Single-winding Latching (G6HU-2)

Double-winding Latching (G6HK-2)

Note: The maximum coil voltage refers to the maximum value in a varying range of operating power voltage, not a continuous voltage.

Malfunctioning Shock Resistance

(G6H-2)
5 VDC
Number of Units: 10

Condition: The Units were shocked at the rate of $500 \mathrm{~m} / \mathrm{s}^{2}$ three times each in the $\pm X, \pm Y$, and $\pm Z$ directions with and without voltage imposed on the Units until the Units malfunctioned.

High-frequency Characteristics

Frequency vs. Isolation

Frequency vs. Insertion Loss

Frequency vs. Return Loss, v.SWR

Note: The above characteristics were obtained from the Units inserted into test sockets. The characteristics of G6H-2 Units in actual operation may be different from the above characteristics. Check the characteristics of G6H-2 Units under the actual conditions before use.

Distribution of Operate and Release Time

Distribution of Bounce Time

Dimensions

Note: 1. All units are in millimeters unless otherwise indicated.
2. Orientation marks are indicated as follows: \square

Single-side Stable Type
G6H-2(-U)

Terminal Arrangement/ Internal Connections (Bottom View)

* Average value

Single-winding Latching Type

G6HU-2(-U)

Double-winding Latching Type
G6HK-2(-U)

Single-side Stable Type
G6H-2F

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

